

Ahsanullah University of Science and Technology (AUST)
Department of Computer Science and Engineering

LABORATORY MANUAL

Course No. : CSE3214
Course Title: Operating System Lab

For the students of 3rd Year, 2nd Semester of
B.Sc. in Computer Science and Engineering program

TABLE OF CONTENTS

COURSE OBJECTIVES.. 1

PREFFERED TOOLS .. 1

TEXT/REFERENCE BOOK ... 1

ADMINISTRATIVE POLICY OF THE LABORATORY .. 1

LIST OF SESSIONS

SESSION 1:

Introduction to Operating System ... 2

Operating System Security .. 5

SESSION 2:

Process Scheduler ... 9

SESSION 3:

Introduction to threads & how to use them in Java & Simulating the Producer-Consumer Problem . 17

Simulating the Reader-Writer Problem .. 21

SESSION 4:

Deadlock Management ... 25

Simulate Banker’s Algorithm for Deadlock Avoidance .. 28

SESSION 5:

Simulating Memory Management of an OS ... 31

SESSION 6:

Simulating Page Replacement- techniques of an OS… ... 34

SESSION 7:

Disk Arm Scheduling ... 39

File Management ... 42

FINAL TERM EXAMINATION .. 45

1

COURSE OBJECTIVES

The main objective of this Lab is to familiarize students with the architecture of Generic
Operating Systems. At the end of the lab works, students should be able to write down
programs in C/C++ or in Java to simulate various components of the Operating system such
as process scheduler, Inter-process communication using semaphores, threads, deadlock
detection, deadlock prevention mechanism etc. They should be also writing simulation codes
which deal with the file systems and disk arm scheduling algorithms. The students shall use
basic to advanced commands in Unix to simulate Operating System’s security and
authentication mechanism.

PREFFERED TOOL(S)

C / C++ / Java / Linux Operating System

TEXT/REFERENCE BOOK(S)

• Tanenbaum A.S., Modern Operating Systems, Prentice Hall, 4th Edition.
• Silberschatz A., Galvin P.B., Operating System Concepts, John Wiley & Sons, 7th

Edition.

ADMINISTRATIVE POLICY OF THE LABORATORY

✓ Students must perform class assessment tasks individually without help of others.
✓ Viva for each program will be taken and considered as a performance.
✓ Plagiarism is strictly forbidden and will be dealt with punishment.

2

File Commands

Introduction to Operating System

Objective: Basic OS management Commands in Unix/Linux

IDE: RedHat Linux/ Ubuntu

You are supposed to get familiar with Linux environment either using RedHat Linux or

Ubuntu.

Tasks

1. Installing Linux

2. How to use Command Line Interface (CLI)

3. Use the basic OS commands of various Categories

1. ls Directory listing

2. ls -al Formatted listing with hidden files

3. ls -lt Sorting the Formatted listing by time modification

4. cd dir Change directory to dir

5. cd Change to home directory

6. pwd Show current working directory

7. mkdir dir Creating a directory dir

8. cat >file Places the standard input into the file

9. more file Output the contents of the file

10. head file Output the first 10 lines of the file

11. tail file Output the last 10 lines of the file

12. tail -f file Output the contents of file as it grows,starting with

the last 10 lines

13. touch file Create or update file

14. rm file Deleting the file

15. rm -r dir Deleting the directory

16. rm -f file Force to remove the file

17. rm -rf dir Force to remove the directory dir

Session # 1

3

Process management

System Info

18. cp file1 file2 Copy the contents of file1 to file2

19. cp -r dir1 dir2 Copy dir1 to dir2;create dir2 if not present

20. mv file1 file2 Rename or move file1 to file2,if file2 is an existing directory

21. ln -s file link Create symbolic link link to file

1. ps To display the currently working processes

2. top Display all running process

Unix/Linux Command Reference

3. kill pid Kill the process with given pid

4. killall proc Kill all the process named proc

5. pkill pattern Will kill all processes matching the pattern

6. bg List stopped or background jobs,resume a stopped

job in the background

7. fg Brings the most recent job to foreground

8. fg n Brings job n to the foreground

1. date Show the current date and time

2. cal Show this month's calender

3. uptime Show current uptime

4. w Display who is on line

5. whoami Who you are logged in as

Unix/Linux Command Reference

6. finger user Display information about user

7. uname -a Show kernel information

8. cat /proc/cpuinfo Cpu information

9. cat proc/meminfo Memory information

4

10. man command Show the manual for command

11. df Show the disk usage

12. du Show directory space usage

13. free Show memory and swap usage

14. whereis app Show possible locations of app

15. which app Show which applications will be run by default

5

Compression

Network Related

Operating System Security

1. tar cf file.tar file Create tar named file.tar containing file

2. tar xf file.tar Extract the files from file.tar

3. tar czf file.tar.gz files Create a tar with Gzip compression

4. tar xzf file.tar.gz Extract a tar using Gzip

5. tar cjf file.tar.bz2 Create tar with Bzip2 compression

6. tar xjf file.tar.bz2 Extract a tar using Bzip2

7. gzip file Compresses file and renames it to file.gz

8. gzip -d file.gz Decompresses file.gz back to file

1. ping host Ping host and output results

2. whois domain Get whois information for domains

3. dig domain Get DNS information for domain

4. dig -x host Reverse lookup host

5. wget file Download file

6. wget -c file Continue a stopped download

Unix/Linux Command Reference

Shortcuts

1. ctrl+c Halts the current command

6

chmod

2. ctrl+z Stops the current command, resume with fg in the foreground or bg in the

background

3. ctrl+d Logout the current session, similar to exit

4. ctrl+w Erases one word in the current line

5. ctrl+u Erases the whole line
6. ctrl+r Type to bring up a recent command

7. !! Repeats the last command

8. Exit Logout the current session.

>>>>> Get familiar with the following commands:

1. chmod - modify file access rights
2. su - temporarily become the superuser
3. sudo - temporarily become the superuser
4. chown - change file ownership
5. chgrp - change a file's group ownership

The chmod command is used to change the permissions of a file or directory. To use it, you specify

the desired permission settings and the file or files that you wish to modify. There are two ways to

specify the permissions. In this lesson we will focus on one of these, called the octal notation method.

It is easy to think of the permission settings as a series of bits (which is how the computer thinks

about them). Here's how it works:

rwx rwx rwx = 111 111 111

rw- rw- rw- = 110 110 110

rwx -------- = 111 000 000

rwx = 111 in binary = 7

rw- = 110 in binary = 6

r-x = 101 in binary = 5

r-- = 100 in binary = 4

If you represent each of the three sets of permissions (owner, group, and other) as a single digit,

you have a pretty convenient way of expressing the possible permissions settings. For example, if

we wanted to set some_file to have read and write permission for the owner, but wanted to keep

the file private from others, we would:

$ chmod 600 some_file

7

Value Meaning

Becoming The Superuser For A Short While

Here is a table of numbers that covers all the common settings. The ones beginning with "7" are

used with programs (since they enable execution) and the rest are for other kinds of files.

777 No restrictions on permissions. Anybody may do anything. Generally not a desirable setting.

755 The file's owner may read, write, and execute the file. All others may read and execute the

file. This setting is common for programs that are used by all users.

700 The file's owner may read, write, and execute the file. Nobody else has any rights. This

setting is useful for programs that only the owner may use and must be kept private from others.

666 All users may read and write the file.

644 The owner may read and write a file, while all others may only read the file. A common

setting for data files that everybody may read, but only the owner may change.

600 The owner may read and write a file. All others have no rights. A common setting for data

files that the owner wants to keep private.
Directory Permissions

The chmod command can also be used to control the access permissions for directories. Again, we
can use the octal notation to set permissions, but the meaning of the r, w, and x attributes is different:
• r - Allows the contents of the directory to be listed if the x attribute is also set.

• w - Allows files within the directory to be created, deleted, or renamed if the x attribute is

also set.

• x - Allows a directory to be entered (i.e. cd dir).

Here are some useful settings for directories:
Value Meaning

777 (rwxrwxrwx) No restrictions on permissions. Anybody may list files, create new files in the

directory and delete files in the directory. Generally not a good setting.

755 (rwxr-xr-x) The directory owner has full access. All others may list the directory, but cannot

create files nor delete them. This setting is common for directories that you wish to share with

other users.

700 (rwx -----) The directory owner has full access. Nobody else has any rights. This setting is

useful for directories that only the owner may use and must be kept private from others.

It is often necessary to become the superuser to perform important system administration tasks, but

as you have been warned, you should not stay logged in as the superuser. In most distributions, there
is a program that can give you temporary access to the superuser's privileges. This program is called

su (short for substitute user) and can be used in those cases when you need to be the superuser for

a small number of tasks. To become the superuser, simply type the su command. You will be

prompted for the superuser's password:

8

Changing File Ownership

Changing Group Ownership

$ su

Password:
$

After executing the su command, you have a new shell session as the superuser. To exit the

superuser session, type exit and you will return to your previous session.

In some distributions, most notably Ubuntu, an alternate method is used. Rather than using su, these

systems employ the sudo command instead. With sudo, one or more users are granted superuser

privileges on an as needed basis. To execute a command as the superuser, the desired command is

simply preceeded with the sudo command. After the command is entered, the user is prompted for

the user's password rather than the superuser's:

$ sudo some_command

Password:

$

You can change the owner of a file by using the chown command. Here's an example: Suppose I

wanted to change the owner ofsome_file from "me" to "you". I could:

$ su
Password:
$ chown you some_file

$ exit

$

Notice that in order to change the owner of a file, you must be the superuser. To do this, our

example employed the su command, then we executed chown, and finally we typed exit to return to

our previous session. The command chown works the same way on directories as it does on files.

The group ownership of a file or directory may be changed with chgrp. This command is used like

this:

$ chgrp new_group some_file

In the example above, we changed the group ownership of some_file from its previous group to

"new_group". You must be the owner of the file or directory to perform a chgrp.

9

Process Scheduler

Objective: Writing codes in Java or in C/C++ to simulate various Process Scheduling Algorithms

IDE: C/C++, Java

Background:

2a. First Come First Serve Process Scheduling

For FCFS scheduling algorithm, you shall get the number of processes/jobs in the system and their

CPU burst times. This is a non-preemptive scheduling where a process getting the CPU will finish its

works and the leave the CPU after it exhausts its required CPU time. The scheduling is performed on

the basis of arrival time of the processes irrespective of their other parameters. Each process will be

executed according to its arrival time. The waiting time and turnaround time of each of the processes

can be calculated as well as the average system turnaround and waiting time.

Example:

Process Arrival Time CPU Time

P1 4 5

P2 0 7

P3

Gantt chart:

2 9

|--------P2---------|--------P3---------|--------P1 -------- |

0 7

Waiting Time

16 21

Turnaround Time

P1 16-4=12 12+5=17

P2 0 0+7=7

P3 7-2=5 5+9=14

Average Waiting Time: (12+0+5)/3 = 5.66

Average Turnaround Time: (17+7+14) / 3 = 12.66

Session # 2

10

Sample input:

Enter the number of process: 3

Enter the CPU times

5 7 9

Enter the arrival times

4 0 2

Sample Output:

Process 1: Waiting Time: 12 Turnaround Time: 17

Process 2: Waiting Time: 0 Turnaround Time: 7

Process 3: Waiting Time: 5 Turnaround Time: 14

Average Waiting time: 5.66

Average Turnaround time: 12.66

Algorithm

Input the processes along with their cputime and arrivaltime
Find waiting time (wt) for all processes.
As the first process comes in and do not need to wait; waiting time for process 0 will be 0

i.e. waitingtime [0] = 0.
Find waiting time for all other processes i.e. for

process i ;
waitingtime[i] = cputime[i-1] + waitingtime [i-1] – arrivaltime[i].

Find turnaround time[i] = waiting_time [i] + cputime[i]
for all processes.

Find average waiting time =
total_waiting_time / no_of_processes.

Similarly, find average turnaround time =
total_turn_around_time / no_of_processes.

11

Input the processes along with their cputime and arrivaltime

Select a process i having the lowest arrival time.
Keep a timer variable that is incremented as follows
Timer = timer + cputime [i]
For all the processes having their arrival time <= Timer

Select a process i having the lowest arrival time.

 2b. Shortest Job First (Non Pre-emptive version)

For the Shortest Job First scheduling algorithm, you shall get the number of processes/jobs in the

system and their CPU burst times. This is a non-preemptive scheduling where a process getting the

CPU will finish its works and the leave the CPU after it exhausts its required CPU time. The scheduling

is performed on the basis of the shortest CPU time of the processes irrespective of their other

parameters. Each process will be executed according to its arrival time. The waiting time and

turnaround time of each of the processes can be calculated as well as the average system turnaround

and waiting time.

Example

Process Arrival Time CPU Time

P1 4 5

P2 0 7

P3 2 9

Gantt chart:

|--------P2---------|--------P1---------|--------P3 -------- |

0 7

Waiting Time

12 21

Turnaround Time

P1 7- 4= 3 3+5=8

P2 0 0+7=7

P3 12-2=10 10+9=19

Average Waiting Time: (3+0+10)/3 = 4.33

Average Turnaround Time: (8+7+19) / 3 = 11.33

Algorithm Hint

12

Note:

• You may use Linux OS for compiling and running your code. You may use any
programming language (C / gcc / C++) for implementing the program.

• Commands to compile and run C/C++ programs in Linux environement.

gcc -o output online.c (for C)

g++ -o output online.cpp (for C++)

Executing the compiled code: ./output

• You also can use code blocks or any other IDE for compile and run your code

Sample input:

Enter the number of process: 3

Enter the CPU times

5 7 9

Enter the arrival times

4 0 2

Sample Output:

Process 1 : Waiting Time : 3 Turnaround Time : 8

Process 2 : Waiting Time : 0 Turnaround Time : 7

Process 3 : Waiting Time : 10 Turnaround Time : 19

Average Waiting time : 4.66

Average Turnaround time : 11.66

13

2c. Round Robin Scheduling Algorithm

A queue of processes are maintained for all the available processes in the system according to their

arrival time. A process P in the system is selected as per the FCFS rule and given opportunity in the

CPU for a pre-defined time quantum Q. If the remaining CPU time r of the process is less than the time

quantum Q, a context switch takes place after r amount of time and the process P leaves the queue.

Otherwise, the process P runs for Q time quantum and a context switch takes place after Q amount

of time. The process P goes to the end of queue for more time quantum until it finishes its required

amount of time.

Example

Process Arrival Time CPU Time

P1 4 5

P2 0 7

P3 6 9

P4 10 9

Time Quantum Q = 3

Gantt chart:

|----P2----|----P2----|----P1----|----P3----|----P2----|----P1----|----P4----|----P3----|----P4----|----P3----|----P4 --- |

0 3 6 9 12 13 15 18 21 24 27 30

 Waiting Time Turnaround Time

P1 6-4 + 13-9 =6 6+5=11

P2 0 + 12-6 =6 6+7=13

P3 9-6 + 18-12 + 24-21 = 12 12+9=21

14

2d. Priority Scheduling

P4 15-10 + 21-18 + 27–24 =11 11+9=20

Average Waiting Time: (6+6+12+11) /4 = 8.75

Average Turnaround Time: (11+13+21+20) / 4 = 16.25

Priority scheduling is one of the most common scheduling algorithms in batch systems. Each

process is assigned a priority. Process with the highest priority is to be executed first and so

on. Processes with the same priority are executed on first come first served basis. If used as

a pre-emptive version, a running process having lower priority will be sent back to the ready

queue if a process with higher priority arrives in the queue.

Process Arrival Time CPU Time Priority

P1 4 5 0

P2 0 7 2

P3 2 9 1

Sample input:

Enter the number of process: 4

Enter the CPU times

5 7 9 9

Enter the arrival times

4 0 6 10

Sample Output:

Process 1 : Waiting Time : 6 Turnaround Time : 11

Process 2 : Waiting Time : 6 Turnaround Time : 13

Process 3 : Waiting Time : 12 Turnaround Time : 21

Process 4 : Waiting Time : 11 Turnaround Time : 20

Average Waiting time : 8.75

Average Turnaround time : 16.25

15

Input the processes along with their cputime , arrivaltime and process priority (lower value
means higher priority)

Select a process i having the lowest priority value.
Keep a timer variable that is incremented as follows
Timer = timer + cputime [i]
For all the processes having their arrival time <= Timer

Select a process i having the lowest priority value.

Gantt chart: (Non pre-emptive)

|--------P2---------|--------P1---------|--------P3 -------- |

0 7

Waiting Time

12 21

Turnaround Time

P1 7-4= 3 3+5=8

P2 0 0+7=7

P3 12-2=10 10+9=19

Average Waiting Time: (3+0+10)/3 = 4.33

Average Turnaround Time: (8+7+19) / 3 = 11.33

Gantt chart: (Pre-emptive Version)

|--------P2---------|--------P3---------|--------P1---------|--------P3---------|--------P2 -------- |

0 2 4 9 16 21

Waiting Time Turnaround Time

P1 4-4= 0 0+5=5

P2 0 + 16-2 = 14 14+7=21

P3 2-2 + 9-4 = 5 5+9=14

Average Waiting Time: (0+14+5)/3 = 6.33

Average Turnaround Time: (5+21+14) / 3 = 13.33

Algorithm Hint (Non Pre-emptive)

16

*** Brainstorm for deriving a solution for the pre-emptive version

Note:

• You may use Linux OS for compiling and running your code. You may use any
programming language (C / gcc / C++) for implementing the program.

• Commands to compile and run C/C++ programs in Linux

gcc -o output online.c (for C)

g++ -o output online.cpp (for C++)

Executing the compiled code: ./output

• You also can use code blocks or any other IDE for compile and run your code

Sample input:

Enter the number of process: 3

Enter the CPU times

5 7 9

Enter the arrival times

4 0 2

Enter the priority values

0 2 1

Sample Output:

Process 1 : Waiting Time : 0 Turnaround Time :5

Process 2 : Waiting Time : 14 Turnaround Time : 21

Process 3 : Waiting Time : 5 Turnaround Time : 14

Average Waiting time : 4.33

Average Turnaround time : 11.33

17

Sample code for thread implementation in Java:

Objective: Introduction to threads and how to use them in Java and Implementing a classical

Inter-process communication problems: Producer-Consumer Problem

IDE: C/C++ , Java

package Mythread;
class FirstThread implements Runnable
{
@Override
public void run()
{
for (int i=1; i<=10; i++)
{

System.out.println("Messag from First Thread : " +i);
try
{

Thread.sleep (1000);
}
catch (InterruptedException interruptedException)
{

System.out.println("First Thread is interrupted when it is sleeping" +interruptedException);
}

}
}

}
class SecondThread implements Runnable
{

@Override
public void run()
{

for (int i=1; i<=10; i++)
{

System.out.println("Messag from Second Thread : " +i);
try

{
Thread.sleep(1000);
}
catch (InterruptedException interruptedException)
{

Session # 3
Introduction to threads and how to use them in Java and

Simulating the Producer-Consumer Problem

18

Task:

System.out.println("Second Thread is interrupted when it is sleeping"
+interruptedException);

}
}

}
}
public class Mythread
{

public static void main(String args[])
{

FirstThread firstThread = new FirstThread();
SecondThread secondThread = new SecondThread();
Thread thread1 = new Thread(firstThread);
thread1.start();
Thread thread2 = new Thread(secondThread);
thread2.start();

}

Producer-consumer problem also known as bounded-buffer problem. The problem

describes two process, the producer and the consumer which share a common fixed-size

buffer used as a queue.

• A producer’s job is to generate data, putting it into the buffer and start again.
• The purpose of the consumer is to consume the available data from the buffer and

empty the buffer.

The standard solution to this problem uses three semaphores: empty and full, which count

the number of empty and full slots in the buffer, and mutex, which is a binary (or mutual

exclusive) semaphore that protects the actual insertion or removal of items in the buffer. The

producer and consumer are running as separate threads and they will move items to and

from a buffer that is synchronized with the empty and full data structures.

Assume the following parameters for the program

• n-sized buffer, can hold n-number of items in total
• Semaphore mutex is initialized to the value 1
• Semaphore full is initialized to the value 0
• Semaphore empty initialized to the value n

19

Input:
Producer 1: Data to insert in the buffer
Data: 10
Producer 3: Data to insert in the buffer
Data: 110
..
..

Output :

Producer 1: Data 10 is inserted in the buffer
Empty space : n-1
Full space : 1
Producer 3: Data 110 is inserted in the buffer
Empty space : n-2

The Pseudocode

ProducerProcess ()

do { ...
/* produce an item in next_produced */
wait(empty);
wait(mutex);

...
/* add next produced to the buffer */

...
signal(mutex);
signal(full);

} while (true);

ConsumerProcess ()

do {
wait(full);
wait(mutex);

...
/* remove an item from buffer to next_consumed */

...
signal(mutex);
signal(empty);

...
/* consume the item in next consumed */

...
} while (true);

20

Full space : 2
Consumer 0: Consumed Data 10 from the buffer
Full space : 1
Consumer 3: Consumed Data 110 from the buffer
Full space : 0

21

Reader- Writer Problem

Objective: Implementing a classical Inter-process communication problems : Reader-Writer

Problem

IDE: C/C++ , Java

Sample code for thread implementation in Java:

package Mythread;
class FirstThread implements Runnable
{
@Override
public void run()
{
for (int i=1; i<=10; i++)
{

System.out.println(“Messag from First Thread : “ +i);
try
{

Thread.sleep (1000);
}
catch (InterruptedException interruptedException)
{

System.out.println(“First Thread is interrupted when it is sleeping” +interruptedException);
}

}
}

}
class SecondThread implements Runnable
{

@Override
public void run()
{

for (int i=1; i<=10; i++)
{

System.out.println(“Messag from Second Thread : “ +i);
try

{
Thread.sleep(1000);
}
catch (InterruptedException interruptedException)
{
System.out.println(“Second Thread is interrupted when it is sleeping”

+interruptedException);

22

Task:

}
}

}
}
public class Mythread
{

public static void main(String args[])
{

FirstThread firstThread = new FirstThread();
SecondThread secondThread = new SecondThread();
Thread thread1 = new Thread(firstThread);
thread1.start();
Thread thread2 = new Thread(secondThread);
thread2.start();

}
}

There is a shared resource which should be accessed by multiple processes. There are two

types of processes in this context. They are reader and writer. Any number of readers can

read from the shared resource simultaneously, but only one writer can write to the shared

resource. When a writer is writing data to the resource, no other process can access the

resource. A writer cannot write to the resource if there are non-zero number of readers

accessing the resource at that time. From the above problem statement, it is evident that

readers have higher priority than writer. If a writer wants to write to the resource, it must

wait until there are no readers currently accessing that resource.

You need to implement the code in Java programming language.

Pseudocode

In the standard solution, we use one mutex m and a semaphore w. An integer variable
read_count is used to maintain the number of readers currently accessing the resource. The
variable read_count is initialized to 0. A value of 1 is given initially to m and w.

Instead of having the process to acquire lock on the shared resource, we use the mutex m to
make the process to acquire and release lock whenever it is updating the read_count
variable.

23

Input / Output :

Data in Buffer : 1 5 6 7 8 9 15
Reader 1: Reading 7
Reader 2: Reading 1

The code for the writer process looks
like this:
while(TRUE)
{

wait(w);

/* perform the write operation */

signal(w);
}
while(TRUE)

{

//acquire lock

wait(m);

read_count++;

if(read_count == 1)

wait(w);

//release lock

signal(m);

/* perform the reading operation */

// acquire lock

wait(m);

read_count--;

if(read_count == 0)

signal(w);

// release lock

signal(m);

• As seen above in the code for the writer, the writer just waits on the w semaphore until
it gets a chance to write to the resource.

• After performing the write operation, it increments w so that the next writer can access
the resource.

• On the other hand, in the code for the reader, the lock is acquired whenever
the read_count is updated by a process.

• When a reader wants to access the resource, first it increments the read_count value,
then accesses the resource and then decrements the read_count value.

• The semaphore w is used by the first reader which enters the critical section and the
last reader which exits the critical section.

• The reason for this is, when the first readers enters the critical section, the writer is
blocked from the resource. Only new readers can access the resource now.

• Similarly, when the last reader exits the critical section, it signals the writer using
the w semaphore because there are zero readers now and a writer can have the chance
to access the resource.

24

Reader 3: Reading 15
Reader 3: Leaves
Reader 2: Leaves
Reader 1: Leaves

Writer 0 : Writes in the system 23, 45
Data in Buffer : 5 6 8 9 23 45
Writer 1 : Waiting
Reader 1: Waiting
Reader 2: Waiting
Writer 0 : Leaves the system
Writer 1 : Writes in the system 3, 4
Data in Buffer : 5 6 8 9 23 45 3 4
Writer 1 : Leaves the system
Reader 1: Reading 5
..
..

25

Deadlock management

Objective: Deadlock detection using resource allocation graph for a single quantity of each

resources using a cycle detection algorithm.

 IDE: C/C++ , Java

Background

Deadlock:

From the application point of view, a deadlock is a situation in which two computer

programs are sharing the same resource and effectively preventing each other from

accessing the resource, resulting in both programs ceasing to function.

Resource Allocation Graph (RAG)

In the Resource Allocation Graph , Vertices (Rectangle : Resource or Circle: process)

represent process and resources. The directed edge from a process P to a resource R

represents that the process P is willing to get resource R. The directed edge from a resource

R to a process P represents that the process P is holding the resource R in its custody.

Deadlock Detection using Resource Allocation Graph (RAG)

Fig1: A simple RAG

If there is a cycle in the Resource Allocation Graph and each resource in the cycle provides

only one instance, then the processes will be in deadlock. For example, if process P1 holds

resource R1, process P2 holds resource R2 and process P1 is waiting for R2 and process P2

is waiting for R1, then process P1 and process P2 will be in deadlock.

Session # 4

26

Number of nodes : 13

Node names : R A C S D T B E F U V W G

Edges: R to A

Deadlock detection using Cycle detection method

Algorithm

1. For each node, N in the graph, perform the following five steps with N as the starting
node.

2. Initialize L to the empty list, designate all arcs as unmarked.
3. Add current node to end of L, check to see if node now appears in L two times. If it

does, graph contains a cycle (listed in L), algorithm terminates.
4. From given node, see if any unmarked outgoing arcs. If so, go to step 5; if not, go to

step 6.
5. Pick an unmarked outgoing arc at random and mark it. Then follow it to the new

current node and go to step 3.
6. If this is initial node, graph does not contain any cycles, algorithm terminates.

Otherwise, dead end. Remove it, go back to previous node, make that one current
node, go to step 3.

Input: A Directed graph (nodes can be either resource or process)

Output: Number of cycles / number of deadlocks existing

Input:

27

Additional Task:

Recovery from a Deadlock

When you are taking input of the node names, you need to ask whether the node is a
resource or a process.

You can recover deadlock in the following way,

1. Pre-empt a resource from a process in the existing cycle and allocate it to other
process to break the deadlock

2. Kill a process and give its resource to the process looking for it.

Brainstorm to derive a solution code for this task

A to S

C to S

…

…

Output

1 - Deadlock Detected Among nodes: D T E V G U

28

Simulate Banker’s Algorithm for Deadlock Avoidance

Objective: Simulate Banker’s Algorithm used for Deadlock Avoidance and find whether the

system is in safe state or not.

IDE: C/C++ , Java

Background :

In Banker’s algorithm, when a new process enters a system, it declares the maximum number

of instances of each resource type it needed. This number may exceed the total number of

resources currently available in the system. When a process requests a set of resources, the

system must determine whether the allocation of each resources will leave the system in safe

state. If it will, the resources are allocated; otherwise the process must wait until some other

process release the resources. If all the processes in the system can be satisfied in any order

by giving them their requested number of resources, the system is said to be in safe state and

the order of serving is called the safe sequence.

Working Procedure

Let us assume that there are n processes and m resource types. Some data structures that
are used to implement the banker's algorithm are:

Available

It is an array of length m. It represents the number of available resources of each type. If
Available[j] = k, then there are k instances available, of resource type R(j).

2. Max

It is an n x m matrix which represents the maximum number of instances of each resource
that a process can request. If Max[i][j] = k, then the process P(i) can request atmost k
instances of resource type R(j).

3. Allocation

It is an n x m matrix which represents the number of resources of each type currently
allocated to each process. If Allocation[i][j] = k, then process P(i) is currently allocated k
instances of resource type R(j).

4. Need

It is an n x m matrix which indicates the remaining resource needs of each process. If
Need[i][j] = k, then process P(i) may need k more instances of resource type R(j) to complete
its task. Here , Need[i][j] = Max[i][j] - Allocation [i][j]

29

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initially,
Work = Available
Finish[i] =false for i = 0, 1, ... , n - 1.
This means, initially, no process has finished and the number of available resources is
represented by the Available array.

2. Find an index i such that both Finish[i] ==false and Needi <= Work
If there is no such i present, then proceed to step 4.

It means, we need to find an unfinished process whose need can be satisfied by the available
resources. If no such process exists, just go to step 4.

3. Perform the following:
Work = Work + Allocation;
Finish[i] = true;
Go to step 2.

When an unfinished process is found, then the resources are allocated and the process is
marked finished. And then, the loop is repeated to check the same for all other processes.

4. If Finish[i] == true for all i, then the system is in a safe state.

Example: Resource X Y Z

X Y Z

Resources= {20, 19, 16}

Allocation Max Need

 X Y Z X Y Z X Y Z

P1 1 1 1 7 5 6 6 4 5

P2 2 3 3 5 8 5 3 5 2

P3 3 0 5 9 2 8 6 2 3

P4 2 2 0 8 8 6 6 6 6

P5 3 1 0 14 4 5 11 3 5

P6 1 2 1 4 6 3 3 4 2

P7 1 1 1 2 9 2 1 8 1

the safe sequence

<P2 , P1, P6, P7, P3, P4, P5>is

30

Program Input:

Enter the no. of processes: 4

Enter the no. of resources:3

Process 1
Maximum value for resource 1:3
Maximum value for resource 2:2
Maximum value for resource 3:2
Allocated from resource 1:1
Allocated from resource 2:0
Allocated from resource 3:0

Process 2
Maximum value for resource 1:6
Maximum value for resource 2:1
Maximum value for resource 3:3
Allocated from resource 1:5
Allocated from resource 2:1
Allocated from resource 3:1

Process 3
Maximum value for resource 1:3

Maximum value for resource 2:1
Maximum value for resource 3:4
Allocated from resource 1:2
Allocated from resource 2:1
Allocated from resource 3:1

Process 4
Maximum value for resource 1:4
Maximum value for resource 2:2
Maximum value for resource 3:2
Allocated from resource 1:0
Allocated from resource 2:0
Allocated from resource 3:2

Enter total value of resource 1:9
Enter total value of resource 2:3
Enter total value of resource 3:6

Program Output:

The System is currently in safe state and
< P2 P1 P3 P4 > is the safe sequence.

Task: Given a set of data for the Banker’s algorithm, detect whether the system is in safe
state or not

NB: You can receive the input from Standard Input or preferably from a file.

31

 Session # 5
Simulating Memory Management of an OS

Objective: Implementing the general concepts of the following Memory allocation techniques and

fragmentations. such as : First-fit , Best Fit, Worst-fit (In Fixed/ variable length partitioning)

IDE: C/C++ , Java

Background

Memory allocation techniques:

Hole – block of available memory; holes of various size are scattered throughout memory
When a process arrives, it is allocated memory from a hole large enough to accommodate it
Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

Fixed Partitioning: In this method, memory is divided into partitions whose sizes are
fixed. OS is placed into the lowest bytes of memory. The number of fixed partition gives the
degree of multiprogramming.

32

If a partition is being used by a process requiring some memory smaller than the partition

size, then it is called an internal fragmentation. If a whole partition is currently not being

used, then it is called an external fragmentation.

External Fragmentation in variable partitioning: Total memory space exists to satisfy a

request, but it is not contiguous.

Example:

How to satisfy a request of size n from a list of free holes

First-fit: Allocate the first hole that is big enough to fit the request.

Best-fit: Allocate the smallest hole that is big enough; must search entire list, (unordered
list by size)

Worst-fit: Allocate the largest hole; must also search entire list.
Memory Block Size

Block 1 50

Block 2 200

Block 3 70

Block 4 115

Block 5

Memory Requests

15

100, 10, 35, 15, 23, 6, 25, 55, 88, 40

Step by step memory allocation situation in First Fit

100 10 35 15 23 6 25 55 88 40

50 40 5 5 5 5 5 5 5 CANT

100 100 100 85 62 56 31 31 31 BE

70 70 70 70 70 70 70 15 15 Allocated

115 115 115 115 115 115 115 115 27 Ext.

Fragmentation

15 15 15 15 15 15 15 15 15 93

33

Input:

Memory Holes : 50 200 70 115 15

Memory Requests: 100, 10, 35, 15, 23, 6, 25, 55, 88, 40

Output :

First Fit

Memory Allocation Step by step (See the example above)

External Fragmentation: 93

Step by step memory allocation situation in Best Fit

100 10 35 15 23 6 25 55 88 40

50 50 15 0 0 0 0 0 0 0

200 200 200 200 200 200 200 145 57 17

70 70 70 70 57 57 32 32 32 32

15 5 5 5 5 5 5 5 5 5

15 15 15 15 15 9 9 9 9 9

No External Fragmentation

Step by step memory allocation situation in Worst Fit

100 10 35 15 23 6 25 55 88 40

50 50 50 50 50 50 50 50 CANT

100 100 100 85 62 62 62 62 BE

70 70 70 70 70 63 63 8 ALLOCATED

115 105 70 70 70 70 45 45

15 15 15 15 15 15 15 15

External Fragmentation : 235

Program

34

6.a FIFO Page Replacement Algorithm

6.b Optimal Page Replacement Algorithm

Simulating Page Replacement- techniques of an OS

Objective: Implementing the general concepts of the following Memory Page Replacement

techniques such as:

FIFO, OPTIMAL, LRU

IDE: C/C++ , Java

Background

If there is no space left in memory, select the page came earlier in the memory

compared to the available pages in the memory and replace that page with the new

one.

Example

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

3 frames (3 pages can be in memory at a time per process)

Total : 15 page faults

If there is no space left in memory, select the page that will either not be used or used

later compared to the available pages in the memory and replace that page with the

new one.

Session # 6

35

6.c Least Recently Used Algorithm

Example

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

3 frames (3 pages can be in memory at a time per process)

Total : 9 page faults

If there is no space left in memory, select the page that has not been used recently

compared to the available pages in the memory and replace that page with the new

one. A page which is not used recently will be replaced.

Example

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

3 frames (3 pages can be in memory at a time per process)

Total : 12 page faults

36

Input:

Number of pages: 8

Number of Page References: 22

ALGORITHM
Start

Read the number of frames from the terminal

Read the number of pages from the terminal
Read the page number requests

Initialize the values in frames to -1

Allocate the pages in to frames as per the algorithm.
Display the number of page faults in the terminal
Stop

Reference String: 7,0 , 1 , 2, 0 , 3 ,0 , 4 , 2 ,3 , 0 ,3 , 0 , 3 ,2 , 1 ,2 , 0 , 1 ,7 , 0 ,1

Number of Memory Page Frame: 3

Output:

Number of page fault using FIFO Page replacement Algorithm: 15

Page Fault Rate: 68%

Number of page fault using Optimal Page replacement Algorithm:

Page Fault Rate: 41%

9

Number of page fault using Least Recently Used Page replacement Algorithm: 12

Page Fault Rate: 55%

37

6.d Least Recently Used page replacement algorithm using stack

If there is no space left in memory, select the page that has not been used recently

compared to the available pages in the memory and replace that page with the new

one. A page which is not used recently will be replaced.

Example

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

3 frames (3 pages can be in memory at a time per process)

Using Stack:

Algorithm:
Start
Read the number of frames from the terminal
Read the number of pages from the terminal
Read the page number requests
For each request, Place the requested page in the memory.
The most recent page goes on top of the stack and other pages are shifted down by

one place. If there is no space in the stack, replace the page at the bottom.
Put the new page at the top of the stack and shift the rest of the pages by one place

towards downward.
Stop

Step by step Stack situation

7 0 1 2 0 3 0 4 2 3 0 3 0 3 2 1 2 0 1 7 0 1

7 0 1 2 0 3 0 4 2 3 0 3 0 3 2 1 2 0 1 7 0 1

7 0 1 2 0 3 0 4 2 3 0 3 0 3 2 1 2 0 1 7 0

7 0 1 2 2 3 0 4 2 2 2 2 0 3 3 1 2 0 1 7

38

NULL R=1, M=1 R=0, M=1 R=0, M=0

Input:

Number of pages: 8

Reference String : 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Number of Memory Page Frame: 3

Output:

7 0 1 2 0 3 0 4 2 3 0 3 0 3 2 1 2 0 1 7 0 1

7 0 1 2 0 3 0 4 2 3 0 3 0 3 2 1 2 0 1 7 0

7 0 1 2 2 3 0 4 2 2 2 2 0 3 3 1 2 0 1 7

 6e. Enhanced second chance algorithm

Uses Reference bit and Modify bit to select a page for replacement.

• (0, 0) - Neither recently used nor modified - best page to replace.
• (0, 1) - Not recently used but modified - not as good because we need to swap

out a page, but still better than used pages.
• (1, 0) - Recently used but unmodified.
• (1, 1) - Recently used and modified - the worst page to replace.

When page replacement called for, use the clock scheme but use the four classes

replace page in lowest non-empty class.

Task: You need to use Linked List based implementation for this task. Store

reference, modify value for each page in the linked implementation.

39

Disk Arm Scheduling

FCFS (First Come First Serve) Scheduling

Disk-Arm Scheduling

Objective: Writing program codes to simulate the following Disk-Arm scheduling algorithms FCFS,

SCAN, CSCAN, LOOK, C-LOOK.

IDE: C/C++ , Java

The operating system tries to use hardware efficiently for disk drives access time, disk bandwidth

Access time has two major components:

□ Seek time is time to move the heads to the cylinder containing the desired sector

□ Rotational latency is additional time waiting to rotate the desired sector to the disk head.

The main objective of disk arm scheduling is to minimize the seek time

The cylinder requests are served in the same order they appear in the request pool.

We illustrate them with a request queue (0-199 cylinder).

Cylinder Requests: 98, 183, 37, 122, 14, 124, 65, 67 ; Head pointer starts at 53

Total Cylinder movement: 640

Session # 7

40

C-SCAN Algorithm

The next cylinder request is served which is nearby from the current serving location in the
request pool.
We illustrate them with a request queue (0-199 cylinder).

Cylinder Requests: 98, 183, 37, 122, 14, 124, 65, 67 ; Head pointer starts at 53

In this algorithm, the service is provided only in one direction and the head moves from the first

cylinder to the last cylinder and serves the request only in one direction.

Example:

SSTF (Shortest Seek time First) Scheduling

41

Input: (FOR FCFS)

Number of heads: 200

Cylinder requests: 7 0 1 2 0 3 0 4 2 3 0 3 0 3 2 1 2 0 1 7 0 1

Current head position: 53

Output:

Cylinder Serving Order: 53 -> 98 -> 183 -> 37 -> 122 -> 14 -> 124 -> 65 -> 67

Total Cylinder movement: 640

42

Contiguous allocation (Sequential)

Input/Output:

Enter total number of blocks : 200

Enter Filename: A
Enter File-Size: 4 blocks
File A created

Enter Filename: B
Enter File-Size: 400 blocks
File B cannot be created (not enough free blocks)

Enter Filename: C
Enter File-Size: 40 blocks
File C created

File Management

Objective: Simulate file Allocation strategies: Contiguous /Non Contiguous file space

allocation

IDE: C/C++/Java

It requires each file to occupy a set of contiguous blocks on the hard disk where disk
address define a linear ordering on the disk.

Algorithm
Create a one dimension array of size n (n is the number of blocks in the disk)
Read a filename from the user that is about to be created and allocated blocks
Read the file-size (S - number of blocks)
Now, Create a unique number for the file.
Read your One dimension array to look for a free space of S number of contiguous
blocks.
If available, allocate the file those blocks and mark in your array
Continue to read q number of files in the same way
If, space cannot be allocated, inform the user that, the file could not be created
Now, read a file name from the user and

show its occupied blocks or ‘NA’ if the file does not exists.

43

Non Contiguous allocation

Input/Output:

Enter total number of blocks : 200

Enter Filename: A
Enter File-Size: 4 blocks
File A created

Enter Filename: B
Enter File-Size: 400 blocks
File B cannot be created (not enough free blocks)

Enter Filename: C
Enter File-Size: 40 blocks

A file may be allocated any free blocks which may not be contiguous but free.

Algorithm

Create a one dimension array of size n (n is the number of blocks in the disk)
Read a filename from the user that is about to be created and allocated blocks
Read the file-size (S - number of blocks)
Now, Create a unique number for the file.
Read your one dimension array to look for a free space of S number of contiguous or
non-contiguous blocks.
If available, allocate the file those blocks and mark in your array
Continue to read q number of files in the same way
If, space cannot be allocated, inform the user that, the file could not be created
Now, read a file name from the user and show its occupied blocks or ‘NA’ if the file
does not exists.

..
..
Search Filename : A
File Found in the blocks : 5, 6, 7, 8

Search Filename : D
File not Found.

44

NB: You may create any additional data structure to preserve any necessary

information.

File C created

..
..
Search Filename : A
File Found in the blocks : 1, 9, 10, 20

Search Filename : D
File not Found.

45

FINAL TERM EXAMINATION

There will be a written examination. Different types of questions will be included such as

MCQ, mathematics, write a program etc.

